Modelling Financial Time Series with Switching State Space Models - Computational Intelligence for Financial Engineering, 1999. (CIFEr). Proceedings of the IEEE/IAFE
نویسندگان
چکیده
The deficiencies of stationary models applied to financial time series are well documented. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We use a dynamic switching (modelled by a hidden Markov model) combined with a linear dynamical system in a hybrid switching state space model (SSSM) and discuss the practical details of trainiig such models with a variational EM algorithm due to [Ghahramani and Hinton, 19981. The performance of the SSSM is evaluated on several financial data sets and it is shown to improve on a number of existing benchmark methods.
منابع مشابه
Modelling financial time series with switching state space models
The deeciencies of stationary models applied to nancial time series are well documented. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for nancial markets. We use a dynamic switching (modelled by a hidden Markov model) combined with a linear dynamical system in a hybrid switching state space...
متن کاملA hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کاملOverview and Comparison of Short-term Interval Models for Financial Time Series Forecasting
In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficien...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملFinancial time series forecasts using fuzzy and long memory pattern recognition systems
In this paper, the concept of long memory systems for forecasting is developed. The Pattern Modelling and Recognition System (PMRS) and Fuzzy Single Nearest Neighbour (SNN) methods are introduced as local approximation tools for forecasting. Such systems are used for matching current state of the time-series with past states to make a forecast. In the past, the PMRS system has been successfully...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009